Quantifying morphological computation based on an information decomposition of the sensorimotor loop

Quantifying morphological computation based on an information decomposition of the sensorimotor loop, Keyan Ghazi-Zahedi and Johannes Rauh, ECAL 2015

Abstract

The question of how an agent is affected by its embodiment has attracted growing attention in recent years. A new field of artificial intelligence has emerged, which is based on the idea that intelligence cannot be understood without taking the embodiment into account. The contribution of an agent’s embodiment to its behaviour is also known as morphologi- cal computation. In this work, we propose a quantification of morphological computation, which is based on an infor- mation decomposition of the sensorimotor loop into shared, unique and synergistic information. Using a simple model of the sensorimotor loop, we show that the unique information of the body with respect to the environment is a good measure for morphological computation.

https://mitpress.mit.edu/sites/default/files/titles/content/ecal2015/978-0-262-33027-5-ch017.pdf

To be continued …

Leave a Reply

Your email address will not be published. Required fields are marked *