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Abstract

The question of how an agent is affected by its embodiment
has attracted growing attention in recent years. A new field
of artificial intelligence has emerged, which is based on the
idea that intelligence cannot be understood without taking
the embodiment into account. The contribution of an agent’s
embodiment to its behaviour is also known as morphologi-
cal computation. In this work, we propose a quantification
of morphological computation, which is based on an infor-
mation decomposition of the sensorimotor loop into shared,
unique and synergistic information. Using a simple model of
the sensorimotor loop, we show that the unique information
of the body with respect to the environment is a good measure
for morphological computation.

Introduction
Morphological computation is discussed in various contexts,
such as DNA computing and self-assembly (see Pfeifer
et al., 2007c; Hauser et al., 2012, for an overview). In this
publication, we are interested in quantifying morphological
computation of embodied agents which are embedded in the
sensorimotor loop. Morphological computation, in this con-
text, is described as the trade-off between morphology and
control (Pfeifer and Scheier, 1999), which means that a well-
chosen morphology, if exploited, substantially reduces the
amount of required control (Montúfar et al., 2014). Here,
the term morphology refers to the agent’s body, explicitly in-
cluding all its physiological and physical properties (shape,
sensors, actuators, friction, mass distribution, etc.) (Pfeifer,
2002). The consensus is that morphological computation
is the contribution of the morphology and environment to
a behaviour, that cannot be assigned to a nervous system
or a controller. There are several examples from biology
that demonstrate how the behaviour of an agent relies on
the interaction of the body and environment. A nice exam-
ple is given by Wootton (1992, see p. 188), who describes
how “active muscular forces cannot entirely control the wing
shape in flight. They can only interact dynamically with the
aerodynamic and inertial forces that the wings experience
and with the wing’s own elasticity; the instantaneous results
of these interactions are essentially determined by the archi-
tecture of the wing itself [. . . ]”

One of the most cited example from the field of embod-
ied artificial intelligence is the Passive Dynamic Walker by
McGeer (1990). In this example, a two-legged walking ma-
chine preforms a naturally appealing walking behaviour, as a
result of a well-chosen morphology and environment, with-
out any need of control. There is simply no computation
available and the walking behaviour is the result of the grav-
ity, the slope of the ground and the specifics of the mechan-
ical construction (weight and length of the body parts, devi-
ation of the joints, etc.). If any parameter of the mechanics
(morphology) or the slope (environment) is changed beyond
a small threshold, the walking behaviour will not persist. In
this context, we understand the exploitation of the body’s
and environment’s physical properties as the embodiments
effect on a behaviour.

It is important to note that talking about a system’s be-
haviour in the context of embodied artificial intelligence
does not make much sense if there is no agency involved.
This means that the e.g. the Passive Dynamic Walker is
basically nothing more than an interesting mechanical sys-
tem. Yet, its purpose is to study how mechanical properties
of the legs affect human walking, which is why it is often
cited as an example for morphological computation. In the
same way, the interaction of the physical properties of in-
sect wings in the given example are meaningless, if there is
no agent that exploits the properties to achieve a behaviour
of interest (flying in this case of insects, walking in case of
humans). In this paper, we focus on the quantification of
body’s physical interaction with it’s environment, to which
we refer as morphological computation. This does not mean
that we are not aware that the flapping of the wings requires
a control, i.e., that morphological computation needs to be
induced by an agent. Discussing both aspects of morpholog-
ical computation in detail is beyond the scope of this work,
although they are both addressed by our information decom-
position of the sensorimotor loop, as we discuss later.

Theoretical work on describing morphological computa-
tion in the context of embodied artificial intelligence has
been conducted by (Hauser et al., 2011; Füchslin et al.,
2012). In this publication, we study an information-theoretic
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approach to quantifying morphological computation which
is based on two of our previous publications: In (Zahedi
and Ay, 2013) we have investigated different quantifications
of morphological computation, which all match the gen-
eral intuition, but showed different results when applied to
a simple model of the sensorimotor loop. In (Bertschinger
et al., 2014) we have derived a general decomposition of a
mutual information of three random variables into unique,
shared, and synergistic information (Bertschinger et al.,
2014). Here, we apply this information decomposition to the
simple model of the sensorimotor loop in order to improve
our previous measures of morphological computation.

The paper is organised in the following way. The next
section discusses the sensorimotor loop and its representa-
tion as a causal graph. The third section describes the bi-
variate information decomposition from Bertschinger et al.
(2014). Based on the information decomposition, the fourth
section introduces the unique information as a measure for
morphological computation in the sensorimotor loop. The
fifth section presents numerical results, which are then dis-
cussed in the final section. An appendix explains how we
computed our measure of morphological computation.

Sensorimotor Loop
Our information theoretic decomposition of the mutual in-
formation requires a formal representation of the sensorimo-
tor loop, which is introduced in this section. In our under-
standing, a cognitive system consists of a brain or controller,
which sends signals to the system’s actuators, thereby affect-
ing the system’s environment. We prefer the notion of the
system’s Umwelt (von Uexkuell, 1934; Clark, 1996; Zahedi
et al., 2010), which is the part of the system’s environment
that can be affected by the system and which itself affects
the system. The state of the actuators and the Umwelt are
not directly accessible to the cognitive system, but the loop
is closed as information about the Umwelt and the body is
provided to the controller through the sensors. In addition
to this general concept of the sensorimotor loop, which is
widely used in the embodied artificial intelligence commu-
nity (see e.g. Pfeifer et al., 2007a) we introduce the notion
of world and by that we mean the system’s morphology and
the system’s Umwelt. We can now distinguish between the
intrinsic and extrinsic perspective in this context. The world
is everything that is extrinsic from the perspective of the
cognitive system, whereas the controller, sensor and actu-
ator signals are intrinsic to the system. This is analogous
to the agent-environment distinction in the context of rein-
forcement learning (Sutton and Barto, 1998), in which the
environment is understood as everything that cannot be con-
trolled arbitrarily by the agent.

The distinction between intrinsic and extrinsic is also cap-
tured in the representation of the sensorimotor loop as a
causal or Bayesian graph (see Fig. 1). For simplicity, we
only discuss the sensorimotor loop for reactive systems.

This is plausible, because behaviours which exploit the em-
bodiment are usually better described as reactive and not
as deliberative. The most prominent examples are locomo-
tion behaviours, e.g. human walking, swimming, flying, etc.,
which are all well-modelled as reactive behaviours.

The random variables S, A, and W refer to sensor, actu-
ator, and world state, and the directed edges reflect causal
dependencies between the random variables (see Klyubin
et al., 2004; Ay and Polani, 2008; Zahedi et al., 2010).
Everything that is extrinsic is captured in the variable W ,
whereas S andA are intrinsic to the agent. The random vari-
ables S and A are not to be mistaken with the sensors and
actuators. The variable S is the output of the sensors, which
is available to the controller or brain, the actionA is the input
that the actuators take. Consider an artificial robotic system
as an example. Then the sensor state S could be the pixel
matrix delivered by some a sensor and the action A could be
a numerical value that is taken by a motor controller to be
converted in currents to drive a motor.

Throughout this work, capital letters (X , Y , . . . ) denote
random variables, non-capital letters (x, y, . . . ) denote spe-
cific values that random variables can take, and calligraphic
letters (X , Y , . . . ) denote the alphabets for the random vari-
ables. For example, the random variable X may take the
value x ∈ X . Greek letters (α, β, . . . ) refer to genera-
tive kernels, i.e. kernels which describe an actual underlying
mechanism or a causal relation between random variables.

The random variables that we consider depend on time,
which we model as a discrete parameter t ∈ N. For exam-
ple, the output of the sensors corresponds to a sequence of
random variables S1, S2, . . . , with one random variable St
for each time step t. We are mostly interested in what hap-
pens in a single time step. Therefore, we use the following
notation. Random variables without any time index refer to
some fixed time t and primed variables to time t + 1. For
example, the two variables S, S′ refer to St and St+1.

W

S A

W'

S'

↵�, ,!
�⇣ �⇣

⇡µ

Figure 1: A formal model of the sensorimotor loop.

Formally, the sensorimotor loop is given by the proba-
bility distribution p(w) and the kernels α(w′|w, a), β(s|w),
and π(a|a), see Figure 1. We choose the same parameter-
isable binary model of the sensorimotor loop as in (Zahedi
and Ay, 2013) (with an additional synergistic parameter, see
Eq. (1)). It allows us to control the causal dependencies of
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S,A, andW individually, and thereby enables us to evaluate
the information decomposition in the sensorimotor loop and
compare the result with our previous results. The model is
given by the following set of equations:

αφ,ψ,ω(w′|w, a) =
eφw

′w+ψw′a+ωw′wa
∑
w′′∈Ω e

φw′′w+ψw′′a+w′′wa
(1)

βζ(s|w) =
eζsw∑

s′′∈Ω e
ζs′′w

(2)

πµ(a|s) =
eµas∑

a′∈Ω e
µa′s

(3)

pτ (w) =
eτw∑

w′′∈Ω e
τw′′

, (4)

where a,w, s, w′ ∈ Ω = {±1} and φ, ψ, ω, ζ, µ, τ ≥ 0. As
in (Zahedi and Ay, 2013), we make the following two sim-
plifying assumptions, which do not restrict generality too
much. First, we assume that all world states w ∈ Ω occur
with equal probability, i.e. p(w = 1) = p(w = −1) = 1/2.
Second, we assume a deterministic sensor, i.e. ζ � 1 ⇒
p(s|w) = δsw, i.e. the sensor is a copy of the world state.
The first assumption does not reduce generality much, be-
cause it only assures that the world state itself does not al-
ready encode some structure, which is propagated through
the sensorimotor loop. The second assumption does not vio-
late the generality of the model, because in a reactive system,
the sensor state S and A can be reduced to a common state,
with a new generative kernel γ(a|w) =

∑
s π(a|s)β(s|w).

Hence, keeping one of the two kernels deterministic and
varying the other in the experiments below, does not reduce
the validity of this model. This leaves four open parameters
ψ, φ, ω, and µ, against which the morphological computa-
tion measure is validated.

Information decomposition is most often discussed in the
context of binary logical functions such as XOR, and so it
is useful to think of the one-step sensorimotor loop as such
a logical function. The one-step sensorimotor loop is a sim-
plified model of the causal diagram of the sensorimotor loop
(which unfolds over time) that we did not present and dis-
cuss due to spacial constraints. A more thorough discus-
sion can be found in (Zahedi et al., 2010; Zahedi and Ay,
2013; Pfeifer et al., 2007b). The one-step sensorimotor loop
is sufficient to discuss, visualise and evaluate the informa-
tion decomposition for the following reason. The decom-
position and quantification of morphological computation is
based on the joint distribution p(w′, w, a) which can be ob-
tained e.g. by observation. An example for such an appli-
cation would be the recording of an animal’s motion with
3D motion capturing and vibromyography (muscle activity)
sensors. The joint distribution p(w′, w, a) can then be ob-
tained from the recorded data (which implicitly means that
we assume ergodicity). The presented model (see Eqs. (1)
to (4) and Fig. 1) is chosen such that it allows us to freely
parametrise the joint distribution.

Information Decomposition
Next, we introduce the information decomposition that un-
derlies our measure of morphological computation. We first
explain this information decomposition in a general infor-
mation theoretic setting and later explain how we use it in
the sensorimotor loop.

Consider three random variables X,Y, Z. Suppose that a
system wants to predict the value of the random variable X ,
but it can only access the information in Y or Z. How is the
information that Y and Z carry about X distributed over Y
and Z? In general, there may be redundant or shared in-
formation (information contained both Y and Z), but there
may also be unique information (information contained in
only one of Y or Z). Finally, there is also the possibility of
synergystic or complementary information, i.e. information
that is only available when Y and Z are taken together. The
classical example for synergy is the XOR function: If Y and
Z are binary random variables and if X = Y XORZ, then
neither Y nor Z contain any information aboutX (in fact,X
is independent of Y and X is independent of Z), but when
Y and Z are taken together, they completely determine X
(in particular, X is not independent from the pair (X,Y )).

The total information that (Y,Z) contains about X can
be quantified by the mutual information MI(X : (Y,Z)).
However, there is no canonical way to separate these differ-
ent kinds of information. Mathematically, one would like to
have four functions SI(X : Y ;Z) (“shared information”),
UI(X : Y \Z) (“unique information of Y ”), UI(X : Z\Y )
(“unique information of Z”), CI(X : Y ;Z) (“complemen-
tary information”) that satisfy

MI(X : (Y,Z)) = SI(X : Y ;Z) + UI(X : Y \ Z)

+ UI(X : Z \ Y ) + CI(X : Y ;Z).
(5)

From the interpretation it is also natural to require

MI(X : Y ) = SI(X : Y ;Z) + UI(X : Y \ Z),

MI(X : Z) = SI(X : Y ;Z) + UI(X : Z \ Y ).
(6)

A set of three functions SI , UI , and CI that satisfy (5)
and (6) is called a bivariate information decomposition
by Bertschinger et al. (2014). It follows from the defining
equations and the chain rule of mutual information that an
information decomposition always satisfies

MI(X : Y |Z) = UI(X : Y \ Z) + CI(X : Y ;Z). (7)

Equations (5) and (6) do not specify the functions SI , UI ,
and CI . Several different candidates have been proposed so
far, for example by Williams and Beer (2010) and Harder
et al. (2013). We will use the decomposition of Bertschinger
et al. (2014) that is defined as follows1:

1The same functions were also proposed by Griffith and Koch
(2014) starting from a measure for “union information” obtained
from formal information-theoretic arguments.
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Let ∆ be the set of all possible joint distributions ofX , Y ,
and Z. Fix an element P ∈ ∆ (the “true” joint distribution
of X , Y , and Z). Define

∆P =
{
Q ∈ ∆ :

Q(X = x, Y = y) = P (X = x, Y = y)

and Q(X = x, Z = z) = P (X = x, Z = z)

for all x ∈ X , y ∈ Y, z ∈ Z
}

as the set of all joint distributions which have the same
marginal distributions on the pairs (X,Y ) and (X,Z). Then

UI(X : Y \ Z) = min
Q∈∆P

MIQ(X : Y |Z),

SI(X : Y ;Z) = max
Q∈∆P

CoIQ(X;Y ;Z),

CI(X : Y ;Z) = MI(X : (Y,Z))

− min
Q∈∆P

MIQ(X : (Y,Z)),

where CoI denotes the interaction information (McGill,
1954), sometimes also called co-information. Here, a sub-
script Q in an information quantity means that the quantity
is computed with respect to Q as the joint distribution.

One idea behind these functions is the following: Sup-
pose that the joint distribution P of X , Y , and Z is not
known, but that just the marginal distributions of the pairs
(X,Y ) and (X,Z) are known. This information is suffi-
cient to characterize the set ∆P , but we do not know which
element of ∆P is the true joint distribution. One can argue
that the UI and SI should be constant on ∆P ; that is, shared
information and unique information should depend only on
the interaction of X and Y and the interaction of X and Z,
but not on the threeway interaction.

The second property that characterizes the information
decomposition is that the set ∆P contains a distribution Q
such that CIQ(X : Y ;Z) = 0. In other words, when only
the marginal distributions of the pairs (X,Y ) and (X,Z)
are known, then we cannot know whether there is synergy
or not. See (Bertschinger et al., 2014) for a more detailed
justification and a proof how these properties determine the
functions UI , SI , and CI .

In Bertschinger et al. (2014), the formulas for UI , CI ,
and SI are derived from considerations about decision prob-
lems in which the objective is to predict the outcome of X .
Here, we want to apply the information decomposition in an-
other setting: We will set X = W ′, Y = W , and Z = A. In
our setting, W and A not only have information about W ′,
but they actually control W ′. However, the situation is sim-
ilar: In the sensorimotor loop, we also expect to find aspects
of redundant, unique, and complementary influence of W
and A on W ′. Formally, since everything is defined prob-
abilistically, we can still use the same functions UI , CI ,
and SI . We believe that the arguments behind the definition

of UI , CI and SI remain valid in the setting of the senso-
rimotor loop where we need it. First, it is still plausible that
unique and redundant contributions should only depend on
the marginal distributions of the pairs (W,W ′) and (A,W ′).
Second, in order to decide whether W and A act synergis-
tically, it does not suffice to know only these marginal dis-
tributions. Therefore, we believe that the functions UI , CI ,
and SI have a meaningful interpretation. In particular, we
hope to be able to use the information decomposition in or-
der to measure morphological computation. This view is
supported by our results below, which indicate that the func-
tions UI , CI and SI do indeed lead to a reasonable decom-
position of MI(W ′ : (A,W )) and that the unique infor-
mation UI(W : W ′ \ A) is a reasonable measure of mor-
phological computation, at least in our simple model of the
sensorimotor loop.

The parameters of our model of the sensorimotor loop
(Eqs (1) to (4)) can also be interpreted in terms of an in-
formation decomposition. Intuitively, φ corresponds to the
unique influence of W on W ′, ψ corresponds to the unique
influence of A on W ′, and ω corresponds to the comple-
mentary influence. However, the role of the other param-
eters ζ, µ, τ is less clear, and there is no clear correspon-
dence for redundant information. The information decom-
position has the advantage, that its definition does not de-
pend on a parametrization. Note that if the “synergistic pa-
rameter” ω = 0 vanishes, then it does not necessarily follow
that CI(W ′ : A;W ) = 0 (see Fig. 2). However, we do ex-
pect the complementary information to be small in this case.

Morphological computation
Morphological computation was described as the contribu-
tion of the embodiment to a behaviour. In our previous work,
we derived two concepts to quantify morphological compu-
tation, which are both based on the world dynamics kernel
α(w′|w, a).

The first concept assumes that the current action A has
no influence on the next world state W ′, in which case the
kernel α(w′|w, a) reduces to α̂(w′|w). If this is the case,
we would say that the systems shows maximal morpho-
logical computation, as the behaviour is completely deter-
mined by the world. To measure the amount of morpho-
logical computation present in a recorded behaviour, we
calculated how much the data differed from the assump-
tion by calculating the weighted Kullback-Leibler diver-
gence

∑
w,a p(w, a)DKL(α(w′|w, a)‖α̂(w′|w)), which is

the conditional mutual information MI(W ′ : A|W ). Be-
cause this quantity is zero if we have maximal morphologi-
cal computation, we inverted and normalised in the follow-
ing way: 1−MI(W ′ : A|W )/ log2 |W |.

The second concept started with the complementary as-
sumption that the current world state W had no influence
on the next world state W ′, i.e., that the world dynam-
ics kernel is given by α̃(w′|a). Morphological compu-
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tation was then quantified as the error from the assump-
tion, given by the weighted Kullback-Leibler divergence∑
w,a p(w, a)DKL(α(w′|w, a)‖α̃(w′|a)), which equals the

conditional mutual information MI(W ′ : W |A).
Both concepts were analysed and quantifications were de-

rived, which didn’t require knowledge about the world, but
could be calculated from intrinsically available information
only. At that time, we could not determine which of the two
concepts would capture morphological computation best, al-
though both concepts and their intrinsic adaptations lead to
different results in a specific configuration (ψ = φ ≈ 0).

Our intention in this publication is to answer this question.
For this purpose, we follow a different approach to quan-
tify morphological computation, by starting with the mutual
information of MI(W ′ : (W,A)) and decompose it into
the shared, unique and synergistic information, as described
in the previous section. Replacing X,Y, Z by W ′,W,A in
Eq. (5), we obtain the following decomposition:

MI(W ′ : (W,A)) = SI(W ′ : W ;A) + UI(W ′ : W \A)

+ UI(W ′ : A \W ) + CI(W ′ : W ;A)
(8)

By Eq. (7), our previous concept two, the conditional mutual
information MI(W ′ : W |A), is given by the sum of the
unique information UI(W ′ : W \ A) and the synergistic
information CI(W ′ : W ;A):

MI(W ′ : W |A) = UI(W ′ : W \A) + CI(W ′ : W ;A).
(9)

The examples we have discussed in the introduction (in-
sect wing and Passive Dynamic Walker) suggest to use the
unique information UI(W ′ : W \ A) to quantify morpho-
logical computation, because it captures the information that
the current and next world state W,W ′ share uniquely. The
next section presents numerical results to investigate how
the conditional mutual information MI(W ′ : W |A) and the
unique information UI(W ′ : W \W ) compare with respect
to quantifying morphological computation.

Experiments
Experiments are conducted on the parameterised model of
the sensorimotor loop (see Fig. 1 and Eqs. (1) to (4)). As
stated earlier, we set τ = 0, i.e. the world state W is drawn
with equal probability (p(w = −1) = p(w = 1) = 1/2), and
ζ � 0 such that the sensor state S is a copy of the world
state W . This leaves four parameters for variation, namely
the three world dynamics kernel parameters φ, ψ, ω and the
policy parameter µ. We decided to plot the information the-
oretic quantities only for µ = 0 (see Figs. 2 and 3), i.e., for
the case, in which the action A is chosen independently of
the current sensor value S and with equal probability. This
allows us to investigate the effect of the action A on the next
world state W ′, without any influence of W on A. We also

Figure 2: Information decomposition for µ = 0.0, ω = 0.0

know from previous experiments (see Zahedi and Ay, 2013),
that the conditional mutual information MI(W ′ : W |A)
drops to zero for increasing µ. Thus, by Eq. (9), unique and
synergistic information also decrease with increasing µ. IfA
is deterministically dependent on W , it also follows that the
unique information UI(W ′ : A\W ) is zero, because A and
W are interchangeable. The only quantity that will be larger
than zero is the shared information, which, by definition, is
not of interest in the context of this work.

Due to spacial constraints, we decided to plot the infor-
mation decomposition for varying φ (parameter of unique
influence of W on W ′) and ψ (parameter of unique influ-
ence of A on W ′) for two different values of ω (parameter
of synergistic influence ofW,A onW ′, see Eq. (1)). This al-
lows us to investigate the effect of the synergistic parameter
on the information decomposition. Fig. 2 shows the results
for ω = 0, while Fig. 3 shows the results for ω = 2. We will
first discuss the results for ω = 0, as they are best compa-
rable with our previous results from (Zahedi and Ay, 2013).

Vanishing synergistic parameter (ω = 0): Fig. 2A
shows that synergistic information CI(W ′ : W ;A) is small
and only present if ψ ≈ φ (diagonal of the image). This
is in agreement with our intuition that ω is the synergistic
parameter. The unique information of the action A and the
next world state W ′, denoted by UI(W ′ : A \W ), is shown
in Figure 2C. The plot reveals that UI(W ′ : A \W ) is only
present when ψ > φ, and it is large whenever ψ is signif-
icantly larger than φ. Figure 2B shows analogous results
for the unique information UI(W ′ : W \ A). In this case,
the unique information is negligible whenever φ . ψ, and
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Figure 3: Information decomposition for µ = 0.0, ω = 2.0

it grows whenever φ is significantly larger than ψ. These
two plots show that the definition of the unique information,
as proposed by Bertschinger et al. (2014), is able to extract
the unique influence in a setting in which two random vari-
ables actually control, i.e., causally influence a third random
variable. Fig. 2D shows the conditional mutual information
MI(W ′ : W |A), which was the second concept of quanti-
fying morphological computation in our previous work (Za-
hedi and Ay, 2013). As stated earlier, the conditional mutual
information is given by the sum of the unique and synergistic
information (Eq. (9)). Hence, there is almost no difference
between Figure 2B and Figure 2D, except on the diagonal,
where the unique information UI(W ′ : W \ A) is slightly
smaller.

Positive synergistic parameter (ω = 2): To study the dif-
ference between UI(W ′ : W \ A) and MI(W ′ : W |A),
and hence, to compare the new quantification with our for-
mer concept, we conducted the same experiments with a
value of ω = 2 (see Figs. 3 and 4). Figs. 3A-C demon-
strate how the information decomposition can distinguish
between the synergistic information and the unique informa-
tions, which is exactly what we need to quantify morpholog-
ical computation. The unique information UI(W ′ : W \A)
captures only the information that the current world state
W and the next world state W ′ share, and therefore, cap-
tures the common understanding of morphological compu-
tation in the context of embodied artificial intelligence. In
the introduction, we presented two examples of morpholog-
ical computation, which described it as the contribution of
the body and environment to a behaviour that cannot be as-
signed to any neural system or robot controller. The unique

Figure 4: MI(W ′ : W |A) and UI(W ′ : W \A) for ω = 2,
replotted from Figure 3 to stress the differences between the
two measures. The plot on the left-hand side shows more
clearly (as compared to Figure 3D) that there is a large do-
main in which MI(W ′ : W |A) is indifferent.

information UI(W ′ : W \A) (see Fig. 3B) captures this no-
tion of morphological computation best, because it vanishes
if the synergistic information CI(W ′ : W ;A) (see Fig. 3A)
or the unique information UI(W ′ : A \W ) (see Fig. 3C)
increases. Given Eq. (9), it is clear that the conditional mu-
tual information MI(W ′ : W |A) is positive (see Fig. 3D)
whenever the unique information UI(W ′ : A \W ) or the
synergistic information CI(W ′ : W ;A) is positive. This is
problematic for the following reason. Fig. 3D shows a large
value of MI(W ′ : W |A) also for values of ψ > φ, which
is counter-intuitive. Furthermore, as Fig. 4 shows (note
that the φψ axes are rotated for better visibility), the condi-
tional mutual information is indifferent for a large range of
|φ − ψ| < d. Additionally, the conditional mutual informa-
tion increases for vanishing φ and ψ, which again is counter-
intuitive, whereas UI(W ′ : W \ A) (see right-hand side of
Fig. 4) nicely reflects our intuition. Therefore, we conclude
that the unique information UI(W ′ : W \ A) is best suited
to quantify morphological computation in the context of em-
bodied artificial intelligence.

Discussion
This work proposes a quantification of morphological com-
putation based on an information decomposition in the sen-
sorimotor loop. In the introduction, morphological compu-
tation was described as the contribution of an agent’s body
and agent’s Umwelt to its behaviour. Important to note is that
both mentioned examples highlighted the contribution of
the embodiment that resulted solely from interactions of the
body and environment and that cannot be attributed to any
type of control by the agent. This is why we propose to use a
decomposition of the mutual informationMI(W ′ : (W,A))
into shared, unique and synergistic information. This allows
us to separate contributions of the embodiment from contri-
butions of the controller (via its actionsA) and contributions
of both, controller and embodiment.

We showed that the information decomposition is related
to our previous work in the following way. The sum of the
unique information UI(W ′ : W \ A) and the synergistic
information CI(W ′ : W ;A) is equal to the conditional mu-
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tual information MI(W ′ : W |A), which is one of our two
earlier concepts for morphological computation. This rela-
tion shows the difference of this work compared to our for-
mer results. We are now able to quantify exactly how much
of the next world stateW ′ is determined by the current world
state W , thereby excluding any influence of the action A.
Therefore, we propose UI(W ′ : W \ A) as a quantification
of morphological computation.

We evaluated the decomposition in a parametrised, binary
model of the sensorimotor loop. The world dynamics ker-
nel α(w′|w, a) was parametrised with three parameters, φ,
ψ, and ω, which roughly relate to the unique information
UI(W ′ : W \A), the unique information UI(W ′ : A \W ),
and the synergistic information CI(W ′ : W ;A). For a
fixed value of ω, the two parameters φ and φ were varied
to evaluate the information decomposition in the sensorimo-
tor loop. We showed that when the synergistic parameter
vanishes (ω = 0), synergistic information is present only
for φ ≈ ψ. This explains why there is only a marginal dif-
ference between UI(W ′ : W \ A) and MI(W ′ : W |A)
in this setting. For a positive synergistic parameter ω = 2,
we showed that the synergistic information was positive for
a much larger domain, which led to a significant difference
between UI(W ′ : W \ A) and MI(W ′ : W |A). In par-
ticular, the condition mutual information MI(W ′ : W |A)
was positive for a larger range of parameter values ψ and φ.
There is a domain |φ−ψ| < d, for which the conditional mu-
tual informationMI(W ′ : W |A) is positive and indifferent.
One would expect to see a higher morphological computa-
tion mostly when φ > ψ, despite the fact that synergistic
information is present. This shows that UI(W ′ : W \ A) is
better suited to quantify morphological computation.

We mentioned in the introduction of this paper that
e.g. the flapping of the wing has a component of morpho-
logical computation that is independent of any control (the
architecture of the wing interacting with the environment)
and a component which is induced by the action (flapping
of the wings). The synergistic information CI(W ′ : W ;A)
captures the second part and should be investigated as a mea-
sure for a different type of morphological computation on its
own. Unfortunately, this is beyond the scope of this work.

Zahedi and Ay (2013) proposed that a measure of mor-
phological computation could be used as a guiding principle
in an open-ended self-organised learning setting. For this
purpose, the measure should only depend on information
that is intrinsically available to the system. Clearly, this is
not the case for UI(W ′ : W \ A). Therefore, future work
will include derivations of the information decomposition,
which only include intrinsically available information. It
would also be interesting to investigate how much a formal-
isation of the information decomposition can benefit from a
consideration of the causal information flow (Ay and Polani,
2008; Ay and Zahedi, 2014). The starting point for our de-
composition was the mutual informationMI(W ′ : (W,A)),

which is a correlational measure and not a measure of causal
dependence, as e.g. proposed by Pearl (2000). In currently
ongoing work, we are applying the quantification to motion
capturing data of real robots.
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Appendix: Computing UI , SI , and CI .
In this appendix we shortly explain how we computed the
functions UI and CI . The appendix of (Bertschinger et al.,
2014) explains how to parametrize the set ∆P and how to
solve the optimization problems in the definitions of UI ,
CI , and SI . In our case, where all variables are binary,
∆P consists of all probability distributions Qγ−1,γ+1 with

w′ w a Qγ−1,γ+1
(w′, w, a)

-1 -1 -1 P (w′, w, a) + γ−1

-1 -1 +1 P (w′, w, a)− γ−1

-1 +1 -1 P (w′, w, a)− γ−1

-1 +1 +1 P (w′, w, a) + γ−1

+1 -1 -1 P (w′, w, a) + γ+1

+1 -1 +1 P (w′, w, a)− γ+1

+1 +1 -1 P (w′, w, a)− γ+1

+1 +1 +1 P (w′, w, a) + γ+1

The range of the two parameters γ±1 is restricted in such a
way thatQγ1−,γ+1 has no negative entries. Since every entry
Qγ−1,γ+1

(w′, w, a) involves only one of the two parameters,
∆P is a rectangle, bounded by the inequalities

max{−P (−1,−1,−1),−P (−1,+1,+1)} ≤ γ−1,

min{P (−1,−1,+1), P (−1,+1,−1)} ≥ γ−1,

max{−P (+1,−1,−1),−P (+1,+1,+1)} ≤ γ+1,

min{P (+1,−1,+1), P (+1,+1,−1)} ≥ γ+1.

To approximately solve the optimization problem we
computed the values on a grid and took the optimal value.
This simple procedure yields an approximation that is good
enough for our purposes.
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